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ABSTRACT Harmonizable processes with spectral mass
concentrated on a number of straight lines are considered.
The asymptotic behavior of the bias and covariance of a
number of spectral estimates is described. The results gener-
alize those obtained for periodic and almost periodic pro-
cesses.

Let {Xt} be a continuous time parameter harmonizable pro-
cess continuous in mean square, 2` , t , `, with EXt [ 0.
By this we mean that the covariance function r(t, t) 5 E(XtXt)
has a Fourier representation

r~t , t! 5 E
2`

` E
2`

`

eitl2itmdF~l, m! [1]

with F(l, m) a function of bounded variation. This implies
that Xt itself has a Fourier representation in mean
square

Xt 5 E
2`

`

eitldZ~l! [2]

in terms of a random function Z(l) with

E~dZ~l!dZ~m!! 5 dF~l, m!. [3]

If the process Xt is real-valued,

dF~u, v! 5 dF~2v, 2u! 5 dF~v, u! 5 dF~2u, 2v!. [4]

In the case of a weakly stationary process r(t, t) 5 r(t 2 t, 0)
and all the spectral mass is located on the diagonal line l 5 m.
If the process is periodic with

r~t , t! 5 r~t 1 a, t 1 a!

for some period a or almost periodic the spectral mass is
located on a finite or countable number of lines in the (l, m)
plane with slope one. If the process is discretely observed
Xn, n 5 0, 61, 62, . . . there is an analogous representa-
tion

Xn 5 E
2p

p

einldW~l!, [5]

dW~l! 5 O
k

dZ~l 1 2kp!,

with

r~n, m! 5 E
2p

p E
2p

p

einl2immdH~l, m!

E~dW~l!dW~m!! 5 dH~l, m! [6]

dH~l, m! 5 O
j,k

dF~l 1 2pj, m 1 2pk!.

The folding of F(l, m) to obtain H(l, m) is referred to as
aliasing.

There is an enormous literature concerned with spectral
estimation in the case of stationary processes (1). Recently
efforts have been made to obtain analogous results on spectral
estimation for periodic and almost periodic processes (2–7). It
is well known that one generally does not have consistent
estimates of spectral mass for a harmonizable process when the
function F (or H) is absolutely continuous with a spectral
density function f, dF(l, m) 5 f(l, m)dldm, with f(l, m) Þ 0
on a set of positive two-dimensional Lebesgue measure, and
one is sampling from the process X2n, . . . , Xn and n 3 `. A
simple example is given by X0 normal with mean zero and
variance one and Xk [ 0 with probability one for k Þ 0. It is
clear that consistency of spectral estimates in the case of
stationary and periodic processes is due to the fact that the
spectral mass is concentrated on lines that in these cases
happen to be of slope one. We shall consider spectral estima-
tion for harmonizable processes when the spectrum is con-
centrated on a finite (or possibly countable) number of lines.
For convenience the slope of the lines will be assumed to be
positive, though the modification for negative slopes is clear.
A simple example of a harmonizable process with spectral
mass on lines is given by

Xt 5 Yt 1 O
s51

k

bsYast, [7]

where Yt is stationary and bs and as are real and positive
numbers, respectively. The object is to give some insight into
an interesting class of nonstationary processes.

Assume that Xt is a harmonizable real-valued process as
already specified with
A1. All its spectral mass on a finite number of lines with

positive slope

u 5 aiv 1 bi, i 5 1, . . . , k.

A2. The spectral mass on the line u 5 aiv 1 bi is given by a
continuously differentiable spectral density fai,bi

(v) if ai #
1. Notice that the real-valued property implies that if u 5
av 1 b is a line of spectral mass, then so are the lines u 5
av 2 b and u 5 a21v 6 a21b. If there are lines of nonzero
spectral mass, the diagonal l 5 m must be one of them
with positive spectral mass. The condition dF(u, v) 5
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dF(v, u) implies if u 5 av 1 b is a line of nonzero spectral
mass, then so is u 5 a21(v 2 b) with

fa21,2a21b~av 1 b! 5 a21fa,b~v!.

A3. The spectral densities fai,bi
(v) and their derivatives are

bounded in absolute value by a function h(v) that is a
monotonic decreasing function of uvu that decreases
to zero as uvu 3 ` and that is integrable as a function
of v.

As already remarked, aliasing or folding of the spectral
mass occurs when the process is discretely sampled at times
n 5 . . . , 2 1, 0, 1, . . . rather than continuously. The fol-
lowing simple remark indicates how a process with line
spectra may differ from a stationary or almost periodic
process in terms of aliasing. The aliasing in the case of a
harmonizable process has a more complicated character.

PROPOSITION 1. Let Xt be a continuous time parameter
process continuous in mean square satisfying conditions A1–A3.
Assume that the lines of spectral support have spectral density
nonzero at all points v, uvu . s for some s . 0. The process
discretely observed Xn then has a countably dense set of lines of
support in [2p, p]2 if and only if one of the lines of spectral
support of Xt has irrational slope a.

The Periodogram

We shall consider spectral estimation for the discretely ob-
served process Xn. The estimates will be obtained by smooth-
ing a version of the periodogram. Before dealing with the
spectral estimates, approximations for the mean and covari-
ances of the periodogram are obtained. Let

Fn~l! 5 O
t52

n
2

ny2

xt e2itl [8]

be the finite Fourier transform of the data x2ny2, . . . , xny2. The
periodogram

In~l, m! 5
1

2p~n 1 1!
Fn~l!Fn~m!, [9]

and it is to be understood that ulu, umu # p with 2p identified
with p so that in effect one is dealing with the torus in (l, m).
Set

Dn~x! 5 O
t52

n
2

ny2

eitx 5

sinS1
2

~n 1 1!xD
sin

1
2

x
,

D̃n~x! 5

sinS1
2

~n 1 1!xD
1
2

x
.

These expressions are versions of the Dirichlet kernel adapted
to (2p, p] and (2`, `). The following result is useful in
obtaining the expressions for the mean and covariance of the
periodogram.

LEMMA 1. If a . 0, uyu , p,

E
2p

p

Dn~ax 1 y!Dn~x!dx 5E
2p

p

D̃n~ax 1 y!D̃n~x!dx 1 O~log n!

[10]

and

1
2~n 1 1! E

2p

p

D̃n~ax 1 y!D̃n~x!dx

5 E
2`

` sinSau 1
1
2

~n 1 1!yD
Sau 1

1
2

~n 1 1!yD
sin u

u
du 1 OS log n

n D

5 p

sinS1
2

~n 1 1!y
a

min~a, 1!D
a

1
2

~n 1 1!yya
1 OS log n

n D [11]

if u yu # ay3, while if u yu $ ay3 the expression is itself of order log
nyn.

Whenever we refer to an expression v 5 z mod 2p it is
understood that 2p , v # p. Let {u} be the integer , such
that 21y2 , u 2 , # 1y2. Our version of z mod 2p is then
z mod 2p 5 z 2 {zy(2p)}2p. In the following an approxi-
mation is given for EIn(am 1 v, m) with the condition imposed
that a . 0 and 2p , am 1 v, m # p. Let y 5 y(k, a, b) 5
(2pka 1 (a 2 a)m 1 b 2 v) mod 2p.

THEOREM 1. The mean

EIn~am 1 v, m! 5 O
u y ~ k, a, b!u# ay3

O
a, b

fa, b~m 1 2pk!

3

sinS1
2

~n 1 1!y
a

min~a, 1!D
a

1
2

~n 1 1!yya
1 OSlog n

n D ,

[12]

where in the sum it is understood that the k are integers and the
pairs (a, b) correspond to the lines u 5 av 1 b in the spectrum
of the continuous time parameter process Xt that one is observing
at integer t.

In the following result an approximation is given for the
cov(In(am 1 v, m), In(a9m9 1 v9, m9)). Here

y~1! 5 ~2pka 1 al9 1 b 2 l!mod 2p

y~2! 5 ~2pka9 2 a9m9 1 m 1 b9!mod 2p

y~3! 5 ~2pka 2 am9 1 b 2 l!mod 2p

y~4! 5 ~2pka9 1 a9l9 1 m 1 b9!mod 2p [13]

with l 5 am 1 v, l9 5 a9m9 1 v9, 2p , l, l9, m, m9 # p. Also
(a, b), (a9, b9) correspond to lines in the spectrum of the
continuous time parameter process Xt that one is observing at
integer times.
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THEOREM 2. The covariance in the case of a normal process
Xt is

cov~In~am 1 v, m!, In~a9m9 1 v9, m9!!

5 3 O
u y~1!u

#
1
3

a

O
a, b

fa,b~l9 1 2pk!

3

sinS1
2

~n 1 1!
y~1!

a
min~a, 1!D

a
1
2

~n 1 1!
y~1!

a

1 OS log n
n D4

3 3 O
u y~2!u

#
1
3

a9

O
a9, b9

fa9, b9~2m9 1 2pk!

3

sinS1
2

~n 1 1!
y~2!

a9
min~a9, 1!D

a9
1
2

~n 1 1!
y~2!

a9

1 OS log n
n D4

1 3 O
u y~3!u

#
1
3

a

O
a,b

fa,b~2m9 1 2pk!

3

sinS1
2

~ n 1 1!
y~3!

a
min~a, 1!D

a
1
2

~n 1 1!
y~3!

a

1 OS log n
n D4

3 3 O
u y~4!u

#
1
3

a9

O
a9, b9

fa9, b9~l9 1 2pk!

3

sinS1
2

~n 1 1!
y~4!

a9
min~a9, 1!D

a9
1
2

~n 1 1!
y~4!

a9

1 OSlog n
n D4 . [14]

COROLLARY 1. The result of Theorem 2 holds with an
additional error term O(1yn) for a nongaussian harmonizable
process with finite fourth-order moments if the fourth-order
cumulants satisfy

1
n

sup
t

O
t,t9,t952ny2

ny2

ucum~xt, xt, xt9, xt9!u3 0. [15]

This will be the case if

sup
t

O
t,t9,t952`

`

ucum~xt, xt, xt9, xt9!u , `. [16]

Spectral Estimates

We consider an estimate f̂a,v(h) of f̃a,v(h) obtained by
smoothing the periodogram. Let K(h) be a nonnegative
bounded weight function of finite support with * K(h)dy 5 1.

The weight function Kn(h) 5 bn
21 K(bn

21h) with bn 2 0 as n
3 ` and nbn 3 `. The weight functions Kn should be
considered as functions on the circle (2p, p] with 2p iden-
tified with p. The estimate

f̂ a,v~h! 5 E
2p

p

In~am 1 v, m!Kn~m 2 h!dm. [17]

PROPOSITION 2. If A2 is strengthened so that the spectral
densities fai,bi

(n) are assumed to be twice continuously differen-
tiable and K is symmetric, then

Ef̂ a,v~h! 2 f̃ a,v~h! 5 O~bn
2! 1 OS log n

n D
where

f̃ a,v~h! 5 O
y~k,a,b!50

fa,b~h 1 2pk!
min~a, 1!

a

as n 3 `.
The asymptotic behavior of covariances is described in the

following result.

THEOREM 3. Let Xt be a continuous time parameter har-
monizable process continuous in mean square satisfying assump-
tions A1–A3 and 16. Then

cov(f̂ a,v~h!, f̂ a9,v9~h9!) 5E
2p

p E
2p

p

Kn~m 2 h!Kn~m9 2 h9!

3 cov(In~am 1 v, m!, In~a9m9 1 v9, m9!dmdm9

5
2p

nbn
FO9 min~a9, 1!

aa9
minSa9

min~a, 1!

min~a9, 1!
, 1D

3 fa,b~a9h9 1 v9 1 2pk!fa9,b9~2h9 1 2pk9!

3EK~a9y!K~y!dy 1 O0 a9 min~a9, 1!

a

3 minS 1
a9

min~a, 1!

min~a9, 1!
, 1D

3 fa,b~2h9 1 2pk!fa9,b9~a9h9 1 v9 1 2pk9!

3EK~2a9a9y!K~y!dyG1 oS 1
nbn

D ,

where the first sum ¥9 is over a, a9, b, b9, k, k9 such that

aa9 5 a9a, ~2pka 1 av9 1 b 2 v!mod 2p

5 2a~~2pk9a9 1 b9!mod 2p!, 22pk9a9 1 2pj9 1 a9h9

2 h 2 b9 5 0

with 2pj9 5 2pk9a9 1 b9 2 ((2pk9a9 1 b9)mod 2p), while the
second sum ¥0 is over a, a9, b, b9, k, k9 such that

a 5 aa9a, ~2pka 2 v 1 b!mod 2p

5 2a~~2pk9a9 1 a9v9 1 b9!mod 2p!, 22pk9a9 2 a9a9h9

2 h 2 a9v 2 b9 1 2pj9 5 0

with
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2pj9 5 2pk9a9 1 a9a9h9 1 h 1 a9v9 1 b9

2 ~~2pk9a9 1 a9a9h 1 a9v9 1 b9!mod 2p!.

In the almost periodic case we have the following corollary.

COROLLARY 2. If the assumptions of Theorem 3 are satis-
fied with Xt almost periodic

cov(f̂ v~h!, f̂ v9~h9!) 5
2p

nbn
FO9 fb~h9 1 v9 1 2pk!fb9~2h9 1 2pk9!

3EK2~y!dy 1 O0 fb~2h9 1 2pk!fb9~h9 1 v9

1 2pk9!EK~2y!K~y!dyG1 oS 1
nbn

D
where the first sum is over b, b9, k, k9 such that

~v9 2 v 1 b!mod 2p 5 ~2~b9!mod 2p! 2 2pk9 1 2pj9

1 h9 2 h 2 b9 5 0

with 2pj9 5 2pk9 1 b9 2 ((b9)mod 2p) while the second sum
is over b, b9, k, k9 with

~2v 1 b!mod 2p 5 2~v9 1 b9!mod 2p, 22pk9 2 h9 2 h

2 v 2 b9 1 2pj9 5 0

with

2pj9 5 2pk9 1 h9 1 h 1 v9 1 b9

2 ~~h9 1 h 1 v9 1 b!mod 2p!.

On heuristic grounds one would expect to be able to estimate
a spectral density localized on a piecewise smooth curve in the
plane.
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